3.591 \(\int \frac {a+b \sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} \sqrt {d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=107 \[ \frac {(2 a-b) \sqrt {\sin (2 e+2 f x)} F\left (\left .e+f x-\frac {\pi }{4}\right |2\right )}{3 f g^2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}+\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}} \]

[Out]

2/3*(a+b)*(d*sin(f*x+e))^(1/2)/d/f/g/(g*cos(f*x+e))^(3/2)-1/3*(2*a-b)*(sin(e+1/4*Pi+f*x)^2)^(1/2)/sin(e+1/4*Pi
+f*x)*EllipticF(cos(e+1/4*Pi+f*x),2^(1/2))*sin(2*f*x+2*e)^(1/2)/f/g^2/(g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 114, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 7, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {3202, 457, 329, 237, 335, 275, 232} \[ \frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}-\frac {2 (2 a-b) \left (1-\csc ^2(e+f x)\right )^{3/4} (d \sin (e+f x))^{3/2} F\left (\left .\frac {1}{2} \csc ^{-1}(\sin (e+f x))\right |2\right )}{3 d^2 f g (g \cos (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[e + f*x]^2)/((g*Cos[e + f*x])^(5/2)*Sqrt[d*Sin[e + f*x]]),x]

[Out]

(2*(a + b)*Sqrt[d*Sin[e + f*x]])/(3*d*f*g*(g*Cos[e + f*x])^(3/2)) - (2*(2*a - b)*(1 - Csc[e + f*x]^2)^(3/4)*El
lipticF[ArcCsc[Sin[e + f*x]]/2, 2]*(d*Sin[e + f*x])^(3/2))/(3*d^2*f*g*(g*Cos[e + f*x])^(3/2))

Rule 232

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcSin[Rt[-(b/a), 2]*x])/2, 2])/(a^(3/4)*R
t[-(b/a), 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rule 237

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[(x^3*(1 + a/(b*x^4))^(3/4))/(a + b*x^4)^(3/4), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 3202

Int[(cos[(e_.) + (f_.)*(x_)]*(c_.))^(m_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Dist[(ff*c^(2*IntPart[(m - 1)/2] + 1)*
(c*Cos[e + f*x])^(2*FracPart[(m - 1)/2]))/(f*(Cos[e + f*x]^2)^FracPart[(m - 1)/2]), Subst[Int[(d*ff*x)^n*(1 -
ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x
] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} \sqrt {d \sin (e+f x)}} \, dx &=\frac {\cos ^2(e+f x)^{3/4} \operatorname {Subst}\left (\int \frac {a+b x^2}{\sqrt {d x} \left (1-x^2\right )^{7/4}} \, dx,x,\sin (e+f x)\right )}{f g (g \cos (e+f x))^{3/2}}\\ &=\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}-\frac {\left ((-2 a+b) \cos ^2(e+f x)^{3/4}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {d x} \left (1-x^2\right )^{3/4}} \, dx,x,\sin (e+f x)\right )}{3 f g (g \cos (e+f x))^{3/2}}\\ &=\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}-\frac {\left (2 (-2 a+b) \cos ^2(e+f x)^{3/4}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-\frac {x^4}{d^2}\right )^{3/4}} \, dx,x,\sqrt {d \sin (e+f x)}\right )}{3 d f g (g \cos (e+f x))^{3/2}}\\ &=\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}-\frac {\left (2 (-2 a+b) \left (1-\csc ^2(e+f x)\right )^{3/4} (d \sin (e+f x))^{3/2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-\frac {d^2}{x^4}\right )^{3/4} x^3} \, dx,x,\sqrt {d \sin (e+f x)}\right )}{3 d f g (g \cos (e+f x))^{3/2}}\\ &=\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}+\frac {\left (2 (-2 a+b) \left (1-\csc ^2(e+f x)\right )^{3/4} (d \sin (e+f x))^{3/2}\right ) \operatorname {Subst}\left (\int \frac {x}{\left (1-d^2 x^4\right )^{3/4}} \, dx,x,\frac {1}{\sqrt {d \sin (e+f x)}}\right )}{3 d f g (g \cos (e+f x))^{3/2}}\\ &=\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}+\frac {\left ((-2 a+b) \left (1-\csc ^2(e+f x)\right )^{3/4} (d \sin (e+f x))^{3/2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-d^2 x^2\right )^{3/4}} \, dx,x,\frac {\csc (e+f x)}{d}\right )}{3 d f g (g \cos (e+f x))^{3/2}}\\ &=\frac {2 (a+b) \sqrt {d \sin (e+f x)}}{3 d f g (g \cos (e+f x))^{3/2}}-\frac {2 (2 a-b) \left (1-\csc ^2(e+f x)\right )^{3/4} F\left (\left .\frac {1}{2} \sin ^{-1}(\csc (e+f x))\right |2\right ) (d \sin (e+f x))^{3/2}}{3 d^2 f g (g \cos (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.18, size = 102, normalized size = 0.95 \[ \frac {2 \cos ^2(e+f x)^{3/4} \left (5 a \sin (e+f x) \, _2F_1\left (\frac {1}{4},\frac {7}{4};\frac {5}{4};\sin ^2(e+f x)\right )+b \sin ^3(e+f x) \, _2F_1\left (\frac {5}{4},\frac {7}{4};\frac {9}{4};\sin ^2(e+f x)\right )\right )}{5 f g \sqrt {d \sin (e+f x)} (g \cos (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[e + f*x]^2)/((g*Cos[e + f*x])^(5/2)*Sqrt[d*Sin[e + f*x]]),x]

[Out]

(2*(Cos[e + f*x]^2)^(3/4)*(5*a*Hypergeometric2F1[1/4, 7/4, 5/4, Sin[e + f*x]^2]*Sin[e + f*x] + b*Hypergeometri
c2F1[5/4, 7/4, 9/4, Sin[e + f*x]^2]*Sin[e + f*x]^3))/(5*f*g*(g*Cos[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (b \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {d \sin \left (f x + e\right )}}{d g^{3} \cos \left (f x + e\right )^{3} \sin \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)/(g*cos(f*x+e))^(5/2)/(d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(b*cos(f*x + e)^2 - a - b)*sqrt(g*cos(f*x + e))*sqrt(d*sin(f*x + e))/(d*g^3*cos(f*x + e)^3*sin(f*x +
 e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \sin \left (f x + e\right )^{2} + a}{\left (g \cos \left (f x + e\right )\right )^{\frac {5}{2}} \sqrt {d \sin \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)/(g*cos(f*x+e))^(5/2)/(d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e)^2 + a)/((g*cos(f*x + e))^(5/2)*sqrt(d*sin(f*x + e))), x)

________________________________________________________________________________________

maple [B]  time = 1.03, size = 327, normalized size = 3.06 \[ \frac {\left (-2 \cos \left (f x +e \right ) \sin \left (f x +e \right ) \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) a +\cos \left (f x +e \right ) \sin \left (f x +e \right ) \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) b +\sqrt {2}\, \cos \left (f x +e \right ) a +\sqrt {2}\, \cos \left (f x +e \right ) b -\sqrt {2}\, a -\sqrt {2}\, b \right ) \cos \left (f x +e \right ) \sin \left (f x +e \right ) \sqrt {2}}{3 f \left (-1+\cos \left (f x +e \right )\right ) \left (g \cos \left (f x +e \right )\right )^{\frac {5}{2}} \sqrt {d \sin \left (f x +e \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(f*x+e)^2)/(g*cos(f*x+e))^(5/2)/(d*sin(f*x+e))^(1/2),x)

[Out]

1/3/f*(-2*cos(f*x+e)*sin(f*x+e)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin
(f*x+e))^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF((-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2),1/2
*2^(1/2))*a+cos(f*x+e)*sin(f*x+e)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/s
in(f*x+e))^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF((-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2),1
/2*2^(1/2))*b+2^(1/2)*cos(f*x+e)*a+2^(1/2)*cos(f*x+e)*b-2^(1/2)*a-2^(1/2)*b)*cos(f*x+e)*sin(f*x+e)/(-1+cos(f*x
+e))/(g*cos(f*x+e))^(5/2)/(d*sin(f*x+e))^(1/2)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \sin \left (f x + e\right )^{2} + a}{\left (g \cos \left (f x + e\right )\right )^{\frac {5}{2}} \sqrt {d \sin \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)/(g*cos(f*x+e))^(5/2)/(d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sin(f*x + e)^2 + a)/((g*cos(f*x + e))^(5/2)*sqrt(d*sin(f*x + e))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {b\,{\sin \left (e+f\,x\right )}^2+a}{{\left (g\,\cos \left (e+f\,x\right )\right )}^{5/2}\,\sqrt {d\,\sin \left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(e + f*x)^2)/((g*cos(e + f*x))^(5/2)*(d*sin(e + f*x))^(1/2)),x)

[Out]

int((a + b*sin(e + f*x)^2)/((g*cos(e + f*x))^(5/2)*(d*sin(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)**2)/(g*cos(f*x+e))**(5/2)/(d*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________